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Attraction at a Distance

Macavity, Macavity, there’s no one like Macavity,

He’s broken every human law, he breaks the law of gravity.

Thomas Stearns Eliot, Old Possum’s Book of  Practical Cats

WHY DO THINGS FALL down?

Some don’t. Macavity, obviously. Along with the Sun, the Moon, 

and almost everything else ‘up there’ in the heavens. Though rocks 

sometimes fall from the sky, as the dinosaurs discovered to their dismay. 

Down here, if you want to be picky, insects, birds, and bats fly, but 

they don’t stay up indefinitely. Pretty much everything else falls, unless 

something is holding it up. But up there, nothing holds it up – yet it 

doesn’t fall.

Up there seems very di7erent from down here.

It took a stroke of genius to realise that what makes terrestrial 

objects fall is the same thing that holds celestial objects up. Newton 

famously compared a falling apple to the Moon, and realised that the 

Moon stays up because, unlike the apple, it’s also moving sideways.1 

Actually, the Moon is perpetually falling, but the Earth’s surface falls 

away from it at the same rate. So the Moon can fall forever, yet go 

round and round the Earth and never hit it.

The real di7erence was not that apples fall and Moons don’t. It was 

that apples don’t move sideways fast enough to miss the Earth.

Newton was a mathematician (and a physicist, chemist, and 

mystic), so he did some sums to confirm this radical idea. He calculated 

the forces that must be acting on the apple and the Moon to make them 

follow their separate paths. Taking their di7erent masses into account, 

1



12 Calculating the Cosmos

the forces turned out to be identical. This convinced him that the Earth 

must be pulling both apple and Moon towards it. It was natural to 

suppose that the same type of attraction holds for any pair of bodies, 

terrestrial or celestial. Newton expressed those attractive forces in a 

mathematical equation, a law of nature.

One remarkable consequence is that not only does the Earth attract 

the apple: the apple also attracts the Earth. And the Moon, and every-

thing else in the universe. But the apple’s e7ect on the Earth is way too 

small to measure, unlike the Earth’s e7ect on the apple.

This discovery was a huge triumph, a deep and precise link between 

mathematics and the natural world. It also had another important 

implication, easily missed among the mathematical technicalities: 

despite appearances, ‘up there’ is in some vital respects the same as 

‘down here’. The laws are identical. What di7ers is the context in which 

they apply.

We call Newton’s mysterious force ‘gravity’. We can calculate its 

e7ects with exquisite accuracy. We still don’t understand it.

For a long time, we thought we did. Around 350 BC the Greek philoso-

pher Aristotle gave a simple reason why objects fall down: they are 

seeking their natural resting place.

To avoid circular reasoning, he also explained what ‘natural’ meant. 

He maintained that everything is made from four basic elements: 

earth, water, air, and fire. The natural resting place of earth and water 

are at the centre of the universe, which of course coincides with the 

centre of the Earth. As proof, the Earth doesn’t move: we live on it, 

and would surely notice if it did. Since earth is heavier than water (it 

sinks, right?) the lowest regions are occupied by earth, a sphere. Next 

comes a spherical shell of water, then one of air (air is lighter than 

water: bubbles rise). Above that – but lower than the celestial sphere 

that carries the Moon – is the realm of fire. All other bodies tend to rise 

or fall according to the proportions in which these four elements occur.

This theory led Aristotle to argue that the speed of a falling body 

is proportional to its weight (feathers fall more slowly than stones) 

and inversely proportional to the density of the surrounding medium 

(stones fall faster in air than in water). Having reached its natural rest 
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state, the body remains there, moving only when a force is applied.

As theories go, these aren’t so bad. In particular, they agree with 

everyday experience. On my desk, as I write, there is a first edition of 

the novel Triplanetary, quoted in the epigram for Chapter 2. If I leave 

it alone, it stays where it is. If I apply a force – give it a shove – it moves 

a few centimetres, slowing down as it does so, and stops.

Aristotle was right.

And so it seemed for nigh on two thousand years. Aristotelian 

physics, though widely debated, was generally accepted by almost all 

intellectuals until the end of the sixteenth century. An exception was 

the Arab scholar al-Hasan ibn al-Haytham (Alhazen), who argued 

against Aristotle’s view on geometric grounds in the eleventh century. 

But even today, Aristotelian physics matches our intuition more closely 

than do the ideas of Galileo and Newton that replaced it.

To modern thinking, Aristotle’s theory has some big gaps. One 

is weight. Why is a feather lighter than a stone? Another is friction. 

Suppose I placed my copy of Triplanetary on an ice-skating rink and 

gave it the same push. What would happen? It would go further: a 

lot further if I rested it on a pair of skates. Friction makes a body 

move more slowly in a viscous – sticky – medium. In everyday life, 

friction is everywhere, and that’s why Aristotelian physics matches our 

intuition better than Galilean and Newtonian physics do. Our brains 

have evolved an internal model of motion with friction built in.

Now we know that a body falls towards the Earth because the 

planet’s gravity pulls it. But what is gravity? Newton thought it was 

a force, but he didn’t explain how the force arose. It just was. It acted 

at a distance without anything in between. He didn’t explain how it 

did that either; it just did. Einstein replaced force by the curvature of 

spacetime, making ‘action at a distance’ irrelevant, and he wrote down 

equations for how curvature is a7ected by a distribution of matter – 

but he didn’t explain why curvature behaves like that.

People calculated aspects of the cosmos, such as eclipses, for 

millennia before anyone realised that gravity existed. But once gravity’s 

role was revealed, our ability to calculate the cosmos became far 

more powerful. Newton’s subtitle for Book 3 of the Principia, which 

described his laws of motion and gravity, was ‘Of the System of the 

World’. It was only a slight exaggeration. The force of gravity, and 

the manner in which bodies respond to forces, lie at the heart of most 
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cosmic calculations. So before we get to the latest discoveries, such as 

how ringed planets spit out moons, or how the universe began, we’d 

better sort out some basic ideas about gravity.

Before the invention of street lighting, the Moon and stars were 

as familiar, to most people, as rivers, trees, and mountains. As the 

Sun went down, the stars came out. The Moon marched to its own 

drummer, sometimes appearing during the day as a pale ghost, but 

shining much more brightly at night. Yet there were patterns. Anyone 

observing the Moon even casually for a few months would quickly 

notice that it follows a regular rhythm, changing shape from a thin 

crescent to a circular disc and back again every 28 days. It also moves 

noticeably from one night to the next, tracing a closed, repetitive path 

across the heavens.

The stars have their own rhythm too. They revolve, once a day, 

round a fixed point in the sky, as if they’re painted on the inside of a 

slowly spinning bowl. Genesis talks of the firmament of Heaven: the 

Hebrew word translated as ‘firmament’ means bowl.

Observing the sky for a few months, it also became obvious that five 

stars, including some of the brightest, don’t revolve like the majority 

of ‘fixed’ stars. Instead of being attached to the bowl, they crawl slowly 

across it. The Greeks associated these errant specks of light with 

Hermes (messenger of the gods), Aphrodite (goddess of love), Ares 

(god of war), Zeus (king of the gods), and Kronos (god of agriculture). 

The corresponding Roman deities gave them their current English 

names: Mercury, Venus, Mars, Jupiter, and Saturn. The Greeks called 

them planetes, ‘wanderers’, hence the modern name planets, of which 

we now recognise three more: Earth, Uranus, and Neptune. Their 

paths were strange, seemingly unpredictable. Some moved relatively 

quickly, others were slower. Some even looped back on themselves as 

the months passed.

Most people just accepted the lights for what they were, in the same 

way that they accepted the existence of rivers, trees, and mountains. 

But a few asked questions. What are these lights? Why are they there? 

How and why do they move? Why do some movements show patterns, 

while others break them?
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The Sumerians and Babylonians provided basic observational data. 

They wrote on clay tablets in a script known as cuneiform – wedge-

shaped. Among the Babylonian tablets that archaeologists have found 

are star catalogues, listing the positions of stars in the sky; they date 

to about 1200 BC but were probably copies of even earlier Sumerian 

tablets. The Greek philosophers and geometers who followed their lead 

were more aware of the need for logic, proof, and theory. They were 

pattern-seekers; the Pythagorean cult took this attitude to extremes, 

believing that the entire universe is run by numbers. Today most scien-

tists would agree, but not about the details.

The Greek geometer who had the most influence on the astronom-

ical thinking of later generations was Claudius Ptolemy, an astronomer 

and geographer. His earliest work is known as the Almagest, from an 

Arabic rendering of its original title, which started out as ‘The Math-

ematical Compilation’, morphed into ‘The Great Compilation’, and 

then into ‘al-majisti’ – the greatest. The Almagest presented a fully 

fledged theory of planetary motion based on what the Greeks consid-

ered to be the most perfect of geometric forms, circles and spheres.

The planets do not, in fact, move in circles. This wouldn’t have been 

news to the Babylonians, because it doesn’t match their tables. The 

Greeks went further, asking what would match. Ptolemy’s answer was: 

combinations of circles supported by spheres. The innermost sphere, 

the ‘deferent’, is centred on the Earth. The axis of the second sphere, 

or ‘epicycle’, is fixed to the sphere just inside it. Each pair of spheres 

is disconnected from the others. It wasn’t a new idea. Two centuries 

earlier, Aristotle – building on even earlier ideas of the same kind – had 

proposed a complex system of 55 concentric spheres, with the axis 

of each sphere fixed to the sphere just inside it. Ptolemy’s modifica-

tion used fewer spheres, and was more accurate, but it was still rather 

complicated. Both led to the question whether the spheres actually 

existed, or were just convenient fictions – or whether something entirely 

di7erent was really going on.

For the next thousand years and more, Europe turned to matters theo-

logical and philosophical, basing most of its understanding of the 

natural world on what Aristotle had said around 350 BC. The universe 
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was believed to be geocentric, with everything revolving around a 

stationary Earth. The torch of innovation in astronomy and mathe-

matics passed to Arabia, India, and China. With the dawn of the Italian 

Renaissance, however, the torch passed back to Europe. Subsequently, 

three giants of science played leading roles in the advance of astro-

nomical knowledge: Galileo, Kepler, and Newton. The supporting cast 

was huge.

Galileo is famous for his invention of improvements to the telescope, 

with which he discovered that the Sun has spots, Jupiter has (at least) 

four moons, Venus has phases like the Moon’s, and there’s something 

strange about Saturn – later explained as its ring system. This evidence 

led him to reject the geocentric theory and embrace Nicolaus Coper-

nicus’s rival heliocentric theory, in which the planets and the Earth 

revolve round the Sun, getting Galileo into trouble with the Church of 

Rome. But he also made an apparently more modest, but ultimately 

more important, discovery: a mathematical pattern in the motion of 

objects such as cannonballs. Down here, a freely moving body either 

speeds up (when falling) or slows down (when rising) by an amount 

that is the same over a fixed, small period of time. In short, the body’s 

acceleration is constant. Lacking accurate clocks, Galileo observed 

these e7ects by rolling balls down gentle inclines.

The next key figure is Kepler. His boss Tycho Brahe had made very 

accurate measurements of the position of Mars. When Tycho died, 

Kepler inherited his position as astronomer to Holy Roman Emperor 

Rudolph II, together with his observations, and set about calculating 

the true shape of Mars’s orbit. After fifty failures, he deduced that the 

orbit is shaped like an ellipse – an oval, like a squashed circle. The Sun 

lies at a special point, the focus of the ellipse.

Ellipses were familiar to the ancient Greek geometers, who defined 

them as plane sections of a cone. Depending on the angle of the plane 

relative to the cone, these ‘conic sections’ include circles, ellipses, 

parabolas, and hyperbolas.

When a planet moves in an ellipse, its distance from the Sun varies. 

When it comes close to the Sun, it speeds up; when it’s more distant, it 

slows down. It’s a bit of a surprise that these e7ects conspire to create 

an orbit that has exactly the same shape at both ends. Kepler didn’t 

expect this, and for a long time it persuaded him that an ellipse must 

be the wrong answer.
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The shape and size of an ellipse are determined by two lengths: its 

major axis, which is the longest line between two points on the ellipse, 

and its minor axis, which is perpendicular to the major axis. A circle 

is a special type of ellipse for which these two distances are equal; they 

then give the diameter of the circle. For astronomical purposes the 

radius is a more natural measure – the radius of a circular orbit is the 

planet’s distance from the Sun – and the corresponding quantities for 

an ellipse are called the major radius and minor radius. These are often 

referred to by the awkward terms semi-major axis and semi-minor axis, 

because they cut the axes in half. Less intuitive but very important is 

the eccentricity of the ellipse, which quantifies how long and thin it is. 

The eccentricity is 0 for a circle and for a fixed major radius it becomes 

infinitely large as the minor radius tends to zero.2

The size and shape of an elliptical orbit can be characterised by 

two numbers. The usual choice is the major radius and the eccentricity. 

The minor radius can be found from these. The Earth’s orbit has major 

radius 149·6 million kilometres and eccentricity 0·0167. The minor 

radius is 149·58 million kilometres, so the orbit is very close to a circle, 

as the small eccentricity indicates. The plane of the Earth’s orbit has a 

special name: the ecliptic.

The spatial location of any other elliptical orbit about the Sun can 

be characterised by three more numbers, all angles. One is the inclina-

tion of the orbital plane to the ecliptic. The second e7ectively gives the 

direction of the major axis in that plane. The third gives the direction 

of the line at which the two planes meet. Finally, we need to know 

where the planet is in the orbit, which requires one further angle. So 

specifying the orbit of the planet and its position within that orbit 

requires two numbers and four angles – six orbital elements. A major 

Left: Conic sections. Right: Basic features of an ellipse.
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goal of early astronomy was to calculate the orbital elements of every 

planet and asteroid that was discovered. Given these numbers, you 

can predict its future motion, at least until the combined e7ects of the 

other bodies disturb its orbit significantly.

Kepler eventually came up with a set of three elegant mathematical 

patterns, now called his laws of planetary motion. The first states that 

the orbit of a planet is an ellipse with the Sun at one focus. The second 

says that the line from the Sun to the planet sweeps out equal areas 

in equal periods of time. And the third tells us that the square of the 

period of revolution is proportional to the cube of the distance.

Newton reformulated Galileo’s observations about freely moving 

bodies as three laws of motion. The first states that bodies continue 

to move in a straight line at a constant speed unless acted on by a 

force. The second states that the acceleration of any body, multiplied 

by its mass, is equal to the force acting on it. The third states that every 

action produces an equal and opposite reaction. In 1687 he reformu-

lated Kepler’s planetary laws as a general rule for how heavenly bodies 

move – the law of gravity, a mathematical formula for the gravitational 

force with which any body attracts any other.

Indeed, he deduced his force law from Kepler’s laws by making one 

assumption: the Sun exerts an attractive force, always directed towards 

its centre. On this assumption, Newton proved that the force is inversely 

proportional to the square of the distance. That’s a fancy way to say 

that, for example, multiplying the mass of either body by three also 

trebles the force, but multiplying the distance between them by three 

reduces the force to one ninth of the amount. Newton also proved the 

converse: this ‘inverse square law’ of attraction implies Kepler’s three 

laws.

Credit for the law of gravity rightly goes to Newton, but the idea 

wasn’t original with him. Kepler deduced something similar by analogy 

with light, but thought gravity pushed planets round their orbits. 

Ismaël Bullialdus disagreed, arguing that the force of gravity must be 

inversely proportional to the square of the distance. In a lecture to the 

Royal Society in 1666, Robert Hooke said that that all bodies move in 

a straight line unless acted on by a force, all bodies attract each other 
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gravitationally, and the force of gravity decreases with distance by a 

formula that ‘I own I have not discovered’. In 1679 he settled on an 

inverse square law for the attraction, and wrote to Newton about it.3 

So Hooke was distinctly mi7ed when exactly the same thing appeared 

in Principia, even though Newton credited him, along with Halley and 

Christopher Wren.

Hooke did accept that only Newton had deduced that closed orbits 

are elliptical. Newton knew that the inverse square law also permits 

parabolic and hyperbolic orbits, but these aren’t closed curves, so the 

motion doesn’t repeat periodically. Orbits of those kinds also have 

astronomical applications, mainly to comets.

Newton’s law goes beyond Kepler’s because of one further feature, 

a prediction rather than a theorem. Newton realised that since the 

Earth attracts the Moon, it seems reasonable that the Moon should 

also attract the Earth. They’re like two country dancers, holding hands 

and whirling round and round. Each dancer feels the force exerted by 

the other, tugging at their arms. Each dancer is held in place by that 

force: if they let go, they will spin o7 across the dance floor. However, 

the Earth is much more massive than the Moon, so it’s like a fat man 

dancing with a small child. The man seems to spin in place as the child 

whirls round and round. But look carefully, and you’ll see that the fat 

man is whirling too: his feet go round in a small circle, and the centre 

about which he rotates is slightly closer to the child than it would have 

been if he were spinning alone.

This reasoning led Newton to propose that every body in the 

universe attracts every other body. Kepler’s laws apply to only two 

bodies, Sun and planet. Newton’s law applies to any system of bodies 

whatsoever, because it provides both the magnitude and the direction 

of all of  the forces that occur. Inserted into the laws of motion, the 

combination of all these forces determines each body’s acceleration, 

hence velocity, hence position at any moment. The enunciation of a 

universal law of gravity was an epic moment in the history and devel-

opment of science, revealing hidden mathematical machinery that 

keeps the universe ticking.

Newton’s laws of motion and gravity triggered a lasting alliance 
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between astronomy and mathematics, leading to much of what we now 

know about the cosmos. But even when you understand what the laws 

are, it’s not straightforward to apply them to specific problems. The 

gravitational force, in particular, is ‘nonlinear’, a technical term whose 

main implication is that you can’t solve the equations of motion using 

nice formulas. Or nasty ones, for that matter.

Post-Newton, mathematicians got round this obstacle either 

by working with very artificial (though intriguing) problems, such 

as three identical masses arranged in an equilateral triangle, or by 

deriving approximate solutions to more realistic problems. The second 

approach is more practical, but actually a lot of useful ideas came from 

the first, artificial though it was.

For a long time, Newton’s scientific heirs had to perform their 

calculations by hand, often a heroic task. An extreme example is 

Charles-Eugène Delaunay, who in 1846 started to calculate an approxi-

mate formula for the motion of the Moon. The feat took over twenty 

years, and he published his results in two volumes. Each has more than 

900 pages, and the second volume consists entirely of the formula. In the 

late twentieth century his answer was checked using computer algebra 

(software systems that can manipulate formulas, not just numbers). 

Only two tiny errors were found, one a consequence of the other. Both 

have a negligible e7ect.

The laws of motion and gravity are of a special kind, called di7er-

ential equations. Such equations specify the rate at which quantities 

change as time passes. Velocity is the rate of change of position, accel-

eration the rate of change of velocity. The rate at which a quantity is 

currently changing lets you project its value into the future. If a car is 

travelling at ten metres per second, then one second from now it will 

have moved ten metres. This type of calculation requires the rate of 

change to be constant, however. If the car is accelerating, then one 

second from now it will have moved more than ten metres. Di7erential 

equations get round this problem by specifying the instantaneous rate 

of change. In e7ect, they work with very small intervals of time, so that 

the rate of change can be considered constant during that time interval. 

It actually took mathematicians several hundred years to make sense of 

that idea in full logical rigour, because no finite period of time can be 

instantaneous unless it’s zero, and nothing changes in zero time.

Computers created a methodological revolution. Instead of 


